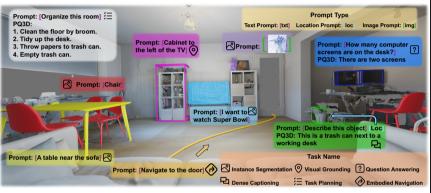
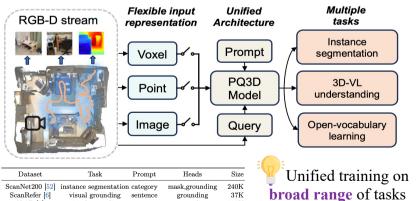


Unifying 3D Vision-Language Understanding via Promptable Queries

Ziyu Zhu^{1,2}, Zhuofan Zhang ^{1,2}, Xiaojian Ma², Xuesong Niu², Yixin Chen², Baoxiong Jia ², Zhidong Deng¹, Siyuan Huang², Qing Li² ¹Tsinghua University ²National Key Laboratory of General Artificial Intelligence, BIGAI, China

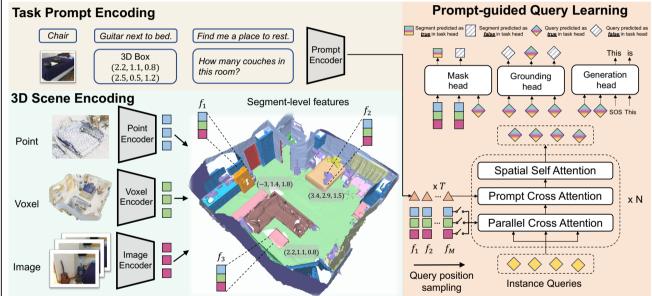


Project Page


Contribution

- a) We introduce PQ3D, a unified model adept at solving a broad spectrum of 3D-VL tasks with promptable queries.
- **b)** PQ3D aligns *voxels*, *point clouds*, and *multi-view images* into a shared 3D space for joint training.
- c) PQ3D not only achieves competitive results but also sets new records across various 3D-VL tasks.

Highlight


Unifying multiple representations from RGB-D stream, including Voxel, Point, and Multi-view images.

Segmentation **Refer**

PO3D Model Design

- a) Diverse prompt and output format for multi-task learning: Diverse prompts including text, image, and location are projected to a shared feature space. Instance queries can retrieve task-relevant information from prompts and be fed to different task heads for unified training.
- b) Leverage multiple representations in one model: Point cloud, voxel grids, and multi-view images are aligned to segment level with shared coordinate space.

Grounding

Generation

 $\mathbf{Q}_{l}^{'} = \mathrm{FFN}(\mathrm{Norm}(\mathbf{Q}_{l} +$

a) Task Prompt Encoding

CLIP text, image encoder for VL prompts MLP for encoding location prompt

b) 3D Scene Encoding

Point cloud: PointNet++ feature for each point Voxel: Apply SparseConvUNet to voxel grid. Multi-view image: OpenSeg pixel feature

c) Prompt-guided Query Learning

Parallel cross attention between queries and features.

Cross attention between queries and prompts. Different task heads for unified learning.

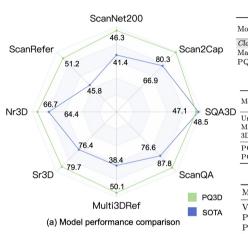
 $\operatorname{Attn}(Q, K, V, S) = \operatorname{softmax}\left(\frac{QK^{T}}{\sqrt{d_{b}}} + \log \sigma(Sw)\right)V,$

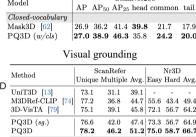
 $F \in \{V, I, P\}$

 $\mathbf{Q}_{l}^{"} = \text{FFN}(\text{Norm}(\mathbf{Q}_{l}^{'} + \text{CrossAttn}(\mathbf{Q}_{l}^{'}, \mathbf{t}))),$

 $\mathbf{Q}_{l+1} = \text{FFN}(\text{Norm}(\text{SpatialSelfAttn}(\mathbf{Q}_{l}^{"}))).$

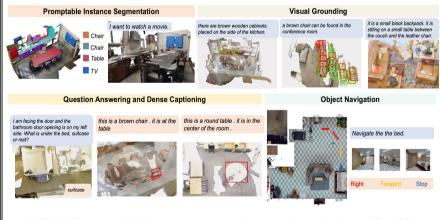
Mask $p_{\text{mask}} = \sigma(f_s(\mathbf{V} + \mathbf{I} + \mathbf{P}) \cdot f_q(\mathbf{Q})^T)$


 $p_{\mathrm{grd}} = \sigma(f_q(\mathbf{Q}))$


T5 small autoregressive

 $MaskedCrossAttn(\mathbf{Q}_l, \mathbf{F})))$

Results and Insights


a) PQ3D demonstrates superior performance on most tasks, from low-level segmentation to high-level reasoning.

Object navigation							
Model	Success \uparrow	$\mathrm{SPL}\uparrow$	Soft-SPL ↑				
VC-1 (ViT-B) [50] PQ3D	80.0	0.31 0.50	0.41 0.60				
PQ3D w/o GPS*	75.0	0.45	0.50				

b) PO3D is a versatile model can take various prompts and solve a broad range of tasks in a flexible way.

c) Unifying multiple representations and tasks benefits 3D vision language understanding.

V P I	Refer	QA	Caption	Task Data	Refer	QA	Caption
$\overline{\checkmark}$	46.1 / 47.1	43.7 / 44.2	67.8 / 68.1	+Refer	-	1.8 ↑	2.2 ↑
√ √	49.2 / 49.4	45.4 / 45.8	74.6 / 74.7	+QA	$\uparrow 0.0$	-	$1.2 \uparrow$
\checkmark \checkmark	51.2	47.1	80.3	+Caption	$0.6 \uparrow$	0.7 ↑	-